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Abstract

This paper addresses the problem of the rotating beam axial shortening modelling. The different methods
for accounting for the rotating beam axial shoretning are used to develop four different models. The models
are named as the potential energy model (PM), kinetic energy model (KM), and kinetic and potential
energy model (KPM), in addition to the model that does not account for the axial shortening named as the
consistent model (CM). The PM model accounts for the axial shortening in the form of added elastic
potential energy that results from the virtual work done by the centrifugal force. In the KM model, the
shortening effect is included in the velocity vector and the corresponding kinetic energy. Finally the KPM
model combines both approaches. The results of analysis showed that the approach which handles both the
effect of rotating speed and the effect of vibration amplitude for all modes correctly is the PM model. The
KM model reflected softening behaviour that cannot be accepted physically by rotating structures for
higher modes. Moreover, the combined KPM method showed in-correctness at low amplitudes that
contradicts the linear theory.
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1. Introduction

The issue of developing accurate dynamic models of rotating flexible structures has attracted
the attention of many researchers and design engineers due to the growing need to operate and
control rotating flexible members with well-predicted dynamic behaviour. Consistent mathema-
tical models that addressed the beam as the typical rotating element and considered only the beam
transverse deflection have resulted in softening effect that allowed rotating beams to a critical
speed after which the beam became statically unstable. This behaviour contradicts the practical
physics of the problem that forced researchers to seek techniques to compensate for this
contradiction through studying the associated stiffening effect produced by the centrifugal forces.
These centrifugal forces can be imposed in the dynamic model by a correction action through
adding potential energy that is produced by material centrifugal forces in conjunction with the
axial shortening due to beam transverse deflection. Alternatively other researchers imposed the
geometrical condition known as the inextensibility condition into the generic material point
position vector that leads automatically to the inclusion of shortening effect in the system kinetic
energy. The previous two approaches of correcting for the shortening effect have been used by
different research studies in calculating the rotating beam natural frequencies and some studies on
the dynamic response simulation. Few studies were reported that adressed the effect of the
approach on the resulting system natural frequencies and dynamic response. However, the
reported analysis results were limited and no quantified assesment was reached. This work is
motivated to put together analysis results and discussions and to put quantified assesment on the
aspects related to the effects on natural frequencies, dynamic simulation and nonlinear analysis.
Hoa [1] studied the natural frequencies of a rotating beam with tip mass. The stiffening effect was

included in the formulation by substituting the resulted stress created by centrifugal forces into the
bending stain energy. Kane et al. [2] studied the dynamics of a cantilever beam attached to a moving
base. The beam axial extension is included into the elastic degrees of freedom, but results were
reported for the rigid body motions ‘‘translation and rotation’’. Baruh and Tadikonda [3] reported
issues on the dynamics and control of flexible robot manipulators. The axial shortening due to
bending deflection was substituted in the kinetic energy expressions. They observed that if the
flexibility is included the resulting angular velocity will be higher and the angular position is deviated
form the target position. Lee [4] studied the vibration of an inclined rotating cantilever beam with tip
mass. The work done by the centrifugal forces was substituted in the potential energy. Results were
presented for the effect of rotational speed, tip mass and inclination angle on the natural frequencies.
Mulmule et al. [5] used the same approach in Ref. [4] to study the flexural vibration of rotating
tapered Timoshenko beam attached to a rigid hub with setting angle. Tadikonda and Chang [6]
accounted for the axial shortening through the potential energy contribution form the centrifugal
force. Al-Bedoor [7,8] studied dynamic response of coupled shaft torsional and blade bending
vibrations. The effect of axial shortening was considered in the formulation by substituting the work
done by the centrifugal force in the potential energy expression. Al-Bedoor and Hamdan [9] studied
the nonlinear dynamic behaviour of a rotating flexible arm. The axial shortening due to bending
deformation was included in the kinetic energy expressions. Deviations in the target position were
faced for certain arm lengths and properties. Al-Qaisia [10,11] used the same approach in Ref. [9] to
study the non-linear natural frequencies and the dynamic behaviour of a rotating cantilever beam
attached to a rigid hub with an angle and carrying inertia element.
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When it comes to investigating the effect of the method for accounting for the axial shortening
on the obtained results only El-Absy et al. [12] can be found. They studied the effect of geometric
stiffness forces on the stability of elastic and rigid body modes. They presented three approaches
in modelling the rotating beam; (1) consistent complete model (CCM), in which the effect of axial
shortening due to bending deformation is included in both the inertia and elastic forces; (2)
consistent incomplete model (CIM), the axial shortening is neglected in both the inertia and elastic
forces; (3) second inconsistent model (SIM), the axial shortening is included in inertia forces and
neglected in elastic forces formulations. Results were presented for the three models and they
concluded that the three models lead to stable solutions at high values of angular velocities and
the inclusion of the effect of axial shortening in the inertia forces is not the only approach that can
be used to maintain stability at high angular velocities. However, they depended on only
investigating the dynamic response and no results were presented either for the natural frequencies
or for the effect of amplitude of vibration.
In this study a unified mathematical model that allows use of the potential energy approach and

the inextensibility condition in the mathematical model of the rotating flexible beam is presented.
The model without any correction is used as the base model for comparison purposes. The
important parameters are identified and the natural frequencies and fast Fourier transform (FFT)
of the system response are studied for comparison. Finally’, the three models’ frequency responses
are studied using the method of harmonic balance for evaluation and investigating the effect of
large amplitude of vibration.
2. The mathematical models

2.1. Consistent model (CM)

The global position vector of an arbitrary point P, in the XY inertial coordinates, Fig. 1, on the
beam can be written as

RP ¼ RH þ ½AðyÞ�rP; ð1Þ

where rP is the position vector of the point P in the rotating body coordinate system xy, A½ðyÞ� is
the rotational transformation matrix from the body coordinate xy system to the inertial
coordinates XY and RH is the position vector of the origin of the rotating body coordinate system
xy in the inertial coordinate XY.
To develop the kinetic energy expression the velocity vector _RP can be represented as follows:

_RP ¼ _RH þ ½AðyÞ�_rP þ _y½AyðyÞ�rP ð2Þ

where AyðyÞ ¼ ½dA=dy�; _RH ¼ _yRHð� sin yî þ cos yĵÞ; rP ¼ si þ vj and _rP ¼ _vj:
Upon substituting for _RH ; rp; _rp; ½AðyÞ� and ½AyðyÞ� into Eq. (2), the velocity vector _RP in the

inertial coordinate system XY can be expressed as

_RP ¼
�a sin yþ g cos y

a cos yþ g sin y

� �
; ð3Þ
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Fig. 1. A schematic of the rotating beam–hub system.
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where

a ¼ _y RH þ sð Þ þ _v;

g ¼ �_yv:

Now, the kinetic energy of the beam–mass–hub system under consideration can be expressed as

KE ¼ 1
2
mb

Z 1

0

_R
T

P � _RP dzþ 1
2
IH

_y
2
; ð4Þ

where mb ¼ rl is the constant mass of the beam, z ¼ s=l is dimensionless position of the material
point, IH is the mass moment of inertia of the hub (IH ¼ mHR2H

�
2) and mH is the mass of the hub.

Substituting Eq. (3) into Eq. (4), the kinetic energy of the considered system takes the form

KE ¼ 1
2mb

Z 1

0

f_y
2
½ðs þ RHÞ

2
þ v2�

þ 2_y½_vðs þ RHÞ� þ _v2gd zþ 1
2
IH

_y
2
: ð5Þ

The beam elastic potential energy with flexural rigidity EI is given by

PE ¼
EIl3

2

Z 1

0

v
002 dz; ð6Þ

where l ¼ 1=l: Using Eqs. (5) and (6) for the kinetic and potential energy expressions,
respectively, the Lagrangian of the system L can be obtained, which upon discretizing us the
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assumed mode method

vðz; tÞ ¼
XN

i¼1

fiðzÞqiðtÞ ð7Þ

takes the form

L ¼
mBl2

2
fb1 _y

2
þ b2 _y

2
q2 þ b3 _y _q þ b4 _q

2 � b2b5q
2g; ð8Þ

where fiðzÞ is the normalized, self-similar (i.e. independent of the motion amplitude) assumed
mode shape of the cantilever beam, qi tð Þ is an unknown time-dependent generalized coordinate
and N is the number of modes.
Applying Lagrange’s equations, the system equations of motion can be written as

2½b1 þ b2q
2�€yþ 4b2q _q_yþ b3 €q ¼

2T

mBl2
; ð9Þ

2b4 €q þ 2½b2b5 � b2 _y
2
�q þ b3 €y ¼ 0; ð10Þ

where the different coefficients are defined as follows:

b2 ¼
EIl4

r

b1 ¼ a1 þ
1
3
þ

RH

l
þ

RH

l

� �2
a1 ¼

mH

mb

;

b2 ¼
Z 1

0

f2 dz;

b3 ¼ 2
Z 1

0

fðzþ
RH

l
Þdz;

b4 ¼
Z 1

0

f2 dz;

b5 ¼
Z 1

0

f
002 dz: ð11Þ

Looking into Eqs. (9) and (10), one can find that the model consists of two coupled ordinary
differential equations. One of the equations represents rigid body motion and the second
represents the elastic deflection of the beam. Moreover, one can observe that Eq. (10) yields static
instablity if the coefficient of q goes to zero which can occur if the system is rotated to a certain
angular velocity _y which is equal to the beam natural frequency. This behaviour is practically not
true as rotating beams get stiffened as a result of rotation. To compensate for this behaviour the
effect of shortening was included in previous studies [7–12].
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2.2. Beam axial shortening due to bending deformations

If the beam deformed position is considered it was observed that the axial position of the
material point changes as can be seen in Fig. 2. Geometrically one can relate the axial shortening
to the transverse deflection. Before deformation the position of a point on the elastic axis is given
by r0 ¼ si: After deformation, its position is given by r ¼ s � uð Þi þ vj; where i; and j are the unit
vectors before and after deformation. Hence, the strain e along the elastic axis of a differential
element is defined by [13]

e ¼
@r

@s
�
@r

@s

� �1=2
�

@r0

@s
�
@r0

@s

� �1=2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� lu0Þ2 þ ðlv0Þ2

q
� 1; ð12Þ

where l ¼ 1=l and primes are derivatives with respect to the dimensionless arc length z: For
inextensional beams, the elongation e is assumed to be zero, resulting in the condition [13],

ð1� lu0Þ2 þ ðlv0Þ2 ¼ 1 ð13Þ

The inextensibility condition (13), allows one to relate, through a consistent geometric

consideration, the axial and the lateral displacement. Eq. (13) may be written as ð1� lu0Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðlv0Þ2

q
: Noting that ðlv0Þ2oo1; expanding the right-hand side into a power series, retaining

nonlinear terms up to the second order, and integrating the result from 0 to an arbitrary value of z
leads to the following expression for the axial displacement (shortening) u due to the flexural
bending v;

u ¼
1

2

Z z

0

lv
02 þ

l3

4
v
04

� �
dz: ð14Þ

Eq. (14) is the relation between the axial position of the material point u and the beam
transverse deflection v: Previous researchers have used this expression to model the added energy
to the system either (1) in the potential energy using the virtual work that is produced by this
s

s

v

u

ψ

dv

ds

x

y

ψ

Fig. 2. The deformed inextensible beam.
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displacement and the centrifugal force due to rotation or (2) in the kinetic energy by accounting
for the axial position as time-dependent variable. Moreover, one possibility is to add both the
effects as they seem not to violate each other. In the following sections, the equations of motion
are derived by using each of the three approaches.
2.3. Potential energy model (PM)

The system potential energy is constituted from the elastic beam strain energy VE and the
potential energy of the axial shortening due to transverse deformation and the motion generated
inertial force, VA: The elastic beam nonlinear strain energy for the beam is given by

VE ¼
EIl3

2

Z 1

0

ðv
002 þ l2v

002v
02Þd z: ð15Þ

The inertial force on the material point P of the beam results from the rotational motion can be
expressed in the form

FP ¼

Z 1

z
rðRH þ lzÞ_y

2
l dz ¼ rl2 _y

2
Z 1

z

RH

l
þ z

� �
dz: ð16Þ

Upon evaluating the integral given in Eq. (16), the inertial force is given by

FP ¼ rl2 _y
2 RH

l
1� zð Þ þ 1

2
ð1� z2Þ


 �
: ð17Þ

The virtual work that results from the axial shortening u under the effect of the inertial forces of
Eq. (23) can be called the axial shortening potential energy and can be written as

VA ¼

Z 1

0

FP � du: ð18Þ

Substituting the inertial force (16) and the axial shortening (14) into the integral of Eq. (18) yields

VA ¼
�rl2 _y

2

2l

Z 1

0

RH

l
ð1� zÞ þ 1

2
ð1� z2Þ

� �
l2v

02 þ
l4

4
v
04

� �
dz: ð19Þ

Evaluating the integral and substituting vðz; tÞ ¼ fq=l; the axial shortening potential energy can
be expressed as

VA ¼
�rl2 _y

2

2l

Z 1

0

RH

l
ð1� zÞ þ 1

2
ð1� z2Þ

� �
q2f

02
þ 1
4
q4f

04
� 

dz: ð20Þ

Now the system potential energy becomes

PE ¼ VA þ VE : ð21Þ
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The system kinetic energy can be obtained by using the same procedure followed in the previously.
Accordingly the system kinetic energy is given by

KE ¼ 1
2
mb

Z 1

0

ð_y
2
½ðs þ RHÞ

2
þ v2�

þ 2_y½_vðs þ RHÞ� þ _v2Þdzþ 1
2IH

_y
2
: ð22Þ

Using the expression of the kinetic and potential energies of the beam-hub system, the
Lagrangian, L ¼ KE� PE; can be written in the form:

L ¼
mBl2

2
fb1 _y

2
þ b2 _y

2
q2 þ b3 _y _q þ b4 _q

2 � b2b5q
2

� b2b6q
4 � b7 _y

2
q2 � b8 _y

2
q4g; ð23Þ

where the inclusion of the added potential energy in the Lagrangian produced the following added
terms:

b6 ¼
Z 1

0

f
02f

002dz

b7 ¼ �

Z 1

0

f
02 RH

l
þ 1
2� z�

z2

2

� �
dz

b8 ¼
�1

4

Z 1

0

f
04 RH

l
þ 1
2
� z�

z2

2

� �
dz ð24Þ

Using the virtual work method and the system Lagrangian Eq. (23), the system equations of
motion are obtained for y and q; as follows:

2½b1 þ ðb2 � b7Þq
2 � b8q

4�€yþ 4ðb2 � b7Þ_yq _q � 8b8 _yq3 _q þ b3 €q ¼
2T

mBl2
; ð25Þ

2b4 €q þ 2 b2b5 þ ðb7 � b2Þ_y
2

h i
q þ 4 b2b6 þ b8 _y

2
h i

q3 þ b3 €y ¼ 0: ð26Þ

Eqs. (25) and (26) are similar to Eqs. (9) and (10), except for added terms which are shown to
stiffen the beam as a function of angular velocity, in addition to an extra cubic nonlinear term that
also has its coefficient as function of the rotating speed.
2.4. The kinetic energy model (KM)

Following the same procedure as in Section 2.1, the kinetic energy is developed. The difference
is in the description of the material position vector rp ¼ s � uð Þi þ vj in the body coordinate
system that considers the axial shortening. Where s is the undeflected position, u s; tð Þ is the axial
shortening due to bending deformation and vðs; tÞ is the transverse deflection of the material point
P measured with respect to the hub coordinate system xy, i and j are the unit vectors along x and
y, respectively, (Fig. 2). As a result the velocity vector of the material point in the inertial reference
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frame can be expressed as

_RP ¼
�a sin yþ b cos y

a cos yþ b sin y

� �
; ð27Þ

where

a ¼ _yðRH þ ðs � uÞÞ þ _v;

b ¼ �ð_yv þ _uÞ

the kinetic energy of the system takes the form

KE ¼ 1
2
mb

Z 1

0

_y
2
½ððs � uÞ þ RHÞ

2
þ v2�

�
þ2_y½_vððs � uÞ þ RHÞ þ _uv� þ _v2 þ _u2

�
d zþ 1

2
IH

_y
2
: ð28Þ

Note that the system kinetic energy in Eq. (28) is a function of the velocity variables _u; _v; angular
velocity _y: The axial velocity _u can be eliminated from the system kinetic energy expression by
substituting Eq. (14).
Upon substituting Eq. (28), and the previous expression for the elastic potential the Lagrangian

expression can be written as

L ¼
mBl2

2

b1 _y
2
þ b2 _y

2
q2 þ b3 _y _q þ b4 _q

2 � b2b5q
2 � b2b6q

4

�b9 _y
2
q2 þ b10 _y

2
q4 � b11 _y

2
q4 þ b12 _y _qq2 þ b13q

2 _q2

( )
; ð29Þ

where the added terms due to the inclusion of the inextensibility condition have the following
coefficients

b9 ¼
R 1
0 z

R z
0 f

02dw
� 

dzþ RH

l

R 1
0

R z
0 f

02dw
� 

dz;

b10 ¼
1
4

R 1
0

R z
0 f

02dw
� 2

dz

 �

;

b11 ¼
1
4

R 1
0 z

R z
0 f

04dw
� 

dzþ RH

4l

R 1
0

R z
0 f

04dw
� 

dz;

b12 ¼
R 1
0 f

R z
0 f

02dw
� 

dz;

b13 ¼
R 1
0

R z
0 f

02dw
� 2

dz:

ð30Þ

By applying Lagrange’s equation to the system Lagrangian equation (29), the system equations
of motion are obtained as

2½b1 þ ðb2 � b9Þq
2 þ ðb10 � b11Þq

4�€yþ 4ðb2 � b9Þ_yq _qþ

8ðb10 � b11Þ_yq3 _q þ b3 €q þ b12ð €qq2 þ 2 _q2qÞþ ¼ 2T
mBl2

ð31Þ

2½b4 þ b13q
2� €q þ ½b3 þ b12q

2�€yþ 2½b2b5 � ðb2 � b9Þ_y
2
�q

þ4½b2b6 � b10 _y
2
þ b11 _y

2
�q3 þ 2b13q _q

2 ¼ 0:
ð32Þ
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Eqs. (31) and (32) represent the same problem of coupled rigid body and beam generalized
deflection as Eqs. (9) and (10) and Eqs. (25) and (26).

2.5. Kinetic and potential model (KPM)

Here in this section the axial shortening is substituted into the kinteic and potential expressions.
Wherein, the Lagrangian of the system becomes

L ¼
mBl2

2

b1 _y
2
þ b2 _y

2
q2 þ b3 _y _q þ b4 _q

2 � b2b5q
2 � b2b6q

4 � b7 _y
2
q2

�b8 _y
2
q4 � b9 _y

2
q2 þ b10 _y

2
q4 � b11 _y

2
q4 þ b12 _y _qq2 þ b13q

2 _q2

( )
: ð33Þ

By applying the Lagrange’s equation to the system Lagrangian equation (33), the system
equations of motion are

2½b1 þ b2 � b7 � b9
� �

q2 þ ðb10 � b8 � b11Þq
4�€yþ 4ðb2 � b7 � b9Þ_yq _q

þ8ðb10 � b8 � b11Þ_yq3 _q þ b3 €q þ b10ð €qq2 þ 2 _q2qÞ ¼ 2T
mBl2

;
ð34Þ

2½b4 þ b13q
2� €q þ ½b3 þ b12q

2�€yþ 2½b2b5 þ ðb7 þ b9 � b2Þ_y
2
�q

þ4½b2b6 þ ðb8 � b10 þ b11Þ_y
2
�q3 þ 2b13q _q

2 ¼ 0:
ð35Þ

Now four models are produced to describe the problem of rotating beam. The models are the
consistent model (CM) where no provision was considered to account for the axial shortening, the
potential energy model (PM) that considers the added potential energy due to centrifugal forces
and axial shoretning, the kinetic energy model (KM) that considers the axial shortening as time
variable and substituted for in the velocity vector and finally the combined potential and kinetic
energy model (KPM) that considers both approaches. Each of these models have produced two
coupled equations of motion that have some common terms. To produce a generalized model for
all models the system of equation is re-written as follows:

2fb1 þ ðb2 � b7 � b9Þq
2 þ ðb10 � b11 � b8Þq

4g b3 � b12q
2

b3 þ b12q
2 2ðb4 þ b13q

2Þ

" #
€y

€q

( )

þ
4ðb2 � b7 � b9Þ_yq _q þ 8ðb10 � b8 � b11Þ_yq3 _q þ 2b12q _q

2

2ðb2b5 þ ðb7 þ b9 � b2Þ_y
2
Þq þ 4ðb2b6 þ ðb8 þ b11 � b10Þ_y

2
Þq3 þ 2b13q _q

2

( )
¼

2T
mBl2

0

( )
;

ð36Þ

where for the corresponding coefficients that vanish for each model are organized in Table 1.
Table 1

Generalized model coeffecients

Model Vanishing coefficients

CM b6yb13=0
PM b9yb13=0
KM b7=b8=0
KPM None
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Table 2

Beam–hub properties

Property Value

Beam length, L 0.4m

Beam flexural rigidity, EI 75N m2

Beam mass per unit length, r 1.35 kg/m

Hub radius, RH 0.05m

Hub mass, MH 3.18 kg

A.A. Al-Qaisia, B.O. Al-Bedoor / Journal of Sound and Vibration 280 (2005) 531–553 541
3. Results and discussion

The developed mathematical models describe the dynamics of the rotating beam under the
effect of externally applied torque. Different methods used to account for the axial shortening
were shown in the previous section to produce different mathematical models that govern the
dynamic behaviour of the system. This dynamic behaviour can be quantified by studying the (1)
system nonlinear natural frequencies as related to the rotating speed, (2) system coupled dynamic
response, (3) sensitivity of the system to the order of deformation and nonlinearity, and (4) system
frequency response. In the following subsections each of the above aspects of the dynamic
behavior is investigated using as the base parameters data given in Table 2.

3.1. Numerical solutions of the equations of motion

The generalized model of the rotating flexible arm is simulated by applying an actuation torque
that rotates the system to a pre-set rotating speed. As a result the beam vibrated at its own natural
frequency after the period of torque vanishing. The cascaded frequency spectra for the four
different models, CM, PM, KM and KPM are shown in Figs. 3–6, respectively. From Fig. 3, one
can observe that increasing the rotating speed decreases the natural frequency and increases the
vibration amplitude that can be referred to reducing the beam stiffnes as can be justified by Eq.
(10). From Eq. (10) one can calculate a critical rotating speed at which the stiffness goes to zero,
thus the beam enters into what is known as static instability. When the potential energy is
augmented by the axial shortening potential energy, defined previously as the PM, the beam
vibration frequencies change with the rotating speed as can be seen in Fig. 4. The vibration
frequency increases with the rotating speed accompanied by reduction in the vibration amplitude.
The behaviour was previously reported by other investigations and known as the stiffening effect.
Similar behaviour can be observed for the KM and KPM models as shown in Figs. 5 and 6,
respectively, but with different rates of increase in the vibration frequency and different rates of
decrease in the vibration amplitude. In all previous simulations the dynamics of each of the
models is obtained naturally as all the nonlinear terms whenever applicable are considered in the
models. The differnce in the rates of increase in the vibration frequencies and decrease in the
vibration amplitude as the rotating speed is increased can be simply related to the existence of
these nonlinear terms. However, the way each of the models behaves cannot be assessed by these
dynamic simulations and extra tests should be conducted. These tests are finding the natural
frequencies as functions of both rotating speed and vibration amplitude.
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3.2. Nonlinear natural frequencies

Due to beam rotation and imposing the stiffening effect the resulting models are non-linear
ones, wherein the stiffness and inertia properties are displacement and velocity dependent. To
examine these models, their non-linear natural frequencies behavior as related to amplitude of
modal deflection is investigated.
To find the rotating beam natural frequencies, the models of Eq. (36), are reduced by assuming

that the rotational speed_y; is constant. As a result the system is reduced to one differential
equation that can be written in the following form:

2b4 €q þ 2b13 €qq2 þ q _q2
� �

þ 2b2b5q þ 4b2b6q
3

þ ðb7 þ b9 � b2Þ_y
2

h i
q þ 4 ðb8 � b10 þ b11Þ_y

2
h i

q3 ¼ 0:
ð37Þ

It is to be noted that some of the coefficients bi in Eq. (37) vanishes based on the model used for
finding the natural frequencies. Table 1 can be consulted to find out the corresponding vanishing
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terms in Eq. (37). For convenience, Eq. (37) can be scaled and converted to the dimensionless
form

q00 þ q � �1O2q � �2O2q3 þ �3 q2 €q þ q _q2
� �

þ �4q
3 ¼ 0: ð38Þ

The prime denotes a derivative with respect to the non-dimensional time t ¼ b2b5
�
b4

� �1=2
t; q is

the dimensionless tip displacement, O ¼ _y
�
oni is the dimensionless hub speed ratio, oni is the

linear natural frequency of the corresponding non-rotating cantilevered beam, and the new
coeficients are defined as functions of bs by the following expressions:

�1 ¼
b2 � b7 � b9

b4
; �2 ¼

2ðb10 � b8 � b11Þ
b4

; �3 ¼
b13
b4

; �4 ¼
2b6
b5

ð39Þ

Following closely the analysis of Ref. [14] of using the method of time transformation, the
nonlinear natural frequencies of the four models (CM, PM, KM, KPM) are found as a function of
rotating speed for the first three modes. As a requirement of the method of time transformation
the vibration amplitude should be defined. The amplitudes used in the present calculations are
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those obtained from the previous dynamic simulations. The nonlinear natural frequency of the
first mode for the four models is presented in Fig. 7. As shown the CM model natural frequency
decreases with the rotating speed until it crosses the speed axis which agrees with the previous
simulations. The PM, KM and KPM models show that the natural frequency increases with
rotating speed, but at different rates. The highest rate is the one given by KPMmodel. The second
and third modes natural frequencies show similar behaviour but with a hardening rate higher in
the PM model than the KM model, Figs. 8 and 9.
To investigate the role of each of the models when the system nonlinearities is considered, the

natural frequencies at selected running speeds are calculated as a function of the tip deflection
amplitude. For this analysis only the three nonlinear models are considered as the consistent
model is a linear one. At dimensionless running speed O ¼ 1; the natural frequencies of the three
models as a function of tip deflection non-dimensional amplitude are presented in Fig. 10, for the
first bending mode. One can observe that the KM gives hardening with amplitude increase linearly
with very small slope that can be taken as constant. In contrast the PM model shows hardening
behaviour with the amplitude that almost follows the cubic curve as shown in Fig. 10. The KPM
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model shows hardening with increase in amplitude that can be described as a second order.
Moreover, one can observe that PM and KM models intersect at an amplitude of 0.07 that means
both predict the same natural frequency only at this amplitude. For amplitudes lower than 0.07,
PM predicts lower natural frequencies. At very low amplitudes, the KPM model predicts the
natural frequency almost 60% higher than both models. The common feature of all three models
for the first mode is that they produced hardening effect with the vibration amplitude. The second
mode nonlinear natural frequency predictions using the PM, KM and KPM models are shown in
Fig. 11 as a function of the amplitude. The PM and KPM models give hardening behaviour while
the KM gives softening behaviour as function of amplitude. The third mode natural frequencies
predictions of the three models are shown in Fig. 12. The PM model still gives hardening
behaviour while the KM and KPM models show softening behaviour. This means that the
amount of softening imposed by the KM model overcomes the hardening effect of the PM model
when both are used simultaneously. The natural frequencies as a function of the vibration
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amplitudes were also calculated for higher rotating speeds with similar predictions obtained
as in Figs. 10–12. The main finding of the natural frequencies predictions as a function of
the vibration amplitude is the softening behaviour that appeared at the KM. This behaviour is
critical as naturally one expects the rotating beams to harden as a result of rotation and at the
same time a concern arises as to the correctness of the KM model in dealing with rotating
structures.
3.3. Frequency response analysis

The generalized model can be excited by an external harmonic force Fsinoet
n; however the

running speed O is kept constant, as can be represented by the following equation:

q00 þ q � �1O2q � �2O2q3 þ �3ðq
2 €q þ q _q2Þ þ �4q

3 ¼ Fsinoet
n; ð40Þ
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where F is a small excitation amplitude and oe is the dimensionless external excitation
frequency.
To find the frequency response, the method of harmonic balance is used for the three models.

The frequency response of the first mode is shown in Fig. 13, wherein the PM model shows clear
hardening and the KM and KPM show small hardening with the amplitude. Moreover, one can
observe that an equivalent backbone curve starts at 1.65 times the linear resonance frequency. The
second frequency response is shown in Fig. 14, in which the PM model keeps reflecting
the hardening behaviour and the KM and KPM give softening behaviour. This contradicts the
behaviour shown in the natural frequencies prediction of Fig. 10 that showed softening for
the KM and hardening for the KPM. The third mode frequency response is shown in Fig. 15 for
the three models. Similar behaviour can be seen as that for the second mode.
To this end one can observe that the three models give different predictions for the natural

frequencies and for the frequency response behaviour. The major finding is that the PM model
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showed consistent predictions in all three analysis approaches and the KM and KPM showed
contradictions based on the method used. This gives more confidence in the PM method for
accounting for the effect of rotation on the beam dynamic behaviour and puts doubts on using the
KMmodel or what is known as the inextensibility condition. When the KPMmodel is used which
is combining both methods one can see that it predicts the natural frequency and frequency
response by about 65% higher than the linear model for small amplitudes. This indicates that
using the KPM model should be excluded from the approaches.
4. Conclusions

The problem of rotating beam shortening is studied in this paper. The available three methods
for accounting for the beam shortening are considered and a generalized model is developed. The
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model was analysed using the time integration for the beam that is rotated to a target speed and
the frequency spectrums were analysed. The consistent model that takes no care of the effect of
rotation shows that the beam can be rotated only to its first natural frequency after which the
beam goes to static instability that enforces the need for using a method to reflect the actual
dynamic behaviour. The PM, KM, and KPM methods are used to produce different models that
are consequently analysed using the dynamic simulations, the nonlinear natural frequency
analysis and the harmonic balance frequency response. The results of analysis showed that the
consistent approach that handles both the effect of rotating speed and the effect of vibration
amplitude for all modes correctly is the PM model. The KM model reflected softening behaviour
that cannot be accepted physically by rotating structures for higher modes. Moreover, the
combined KPM method showed incorrectness at low amplitudes that contradicts the linear
theory. To give more rigid conclusions in this direction an experimental study is highly
recomemnded, although the complexity of the experiments is expected.
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